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Abstract.
Background: Mild cognitive impairment (MCI) is a heterogeneous condition and MCI patients are at increased risk of
progression to dementia due to Alzheimer’s disease (AD).
Objective: In this study, we aim to evaluate the associations between polygenic risk scores (PRSs) and 1) time to AD
progression from MCI, 2) changes in longitudinal cognitive impairment, and 3) biomarkers from cerebrospinal fluid and
imaging.
Methods: We constructed PRS by using 40 independent non-APOE SNPs from well-replicated AD GWASs and tested its
association with the progression time from MCI to AD by using 767 MCI patients from the ADNI study and 1373 patients
from the NACC study. PRSs calculated with other methods were also computed.
Results: We found that the PRS constructed with SNPs that reached genome-wide significance predicted the progression from
MCI to AD (beta = 0.182, SE = 0.061, p = 0.003) after adjusting for the demographic and clinical variables. This association
was replicated in the NACC dataset (beta = 0.094, SE = 0.037, p = 0.009). Further analyses revealed that PRS was associated
with the increased ADAS-Cog11/ADAS-Cog13/ADASQ4 scores, tau/ptau levels, and cortical amyloid burdens (PiB-PET
and AV45-PET), but decreased hippocampus and entorhinal cortex volumes (p < 0.05). Mediation analysis showed that the
effect of PRS on the increased risk of AD may be mediated by A�42 (beta = 0.056, SE = 0.026, p = 0.036).
Conclusion: Our findings suggest that PRS can be useful for the prediction of time to AD and other clinical changes after
the diagnosis of MCI.

Keywords: Alzheimer’s disease, longitudinal analysis, mild cognitive impairment, neuroimaging, polygenic risk score,
survival analysis
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neu-
rodegenerative disorder with the main neuropatho-
logical features of neuronal loss and accumulation
of intracellular tau-containing neurofibrillary tangles
and extracellular amyloid-� (A�) deposits in the
brain [1]. It is estimated there are around 5.8 mil-
lion AD patients in the US and 700,000 people age
65 years and older will die from AD in 2020 [2].
Late-onset AD (LOAD) has onset after the age of 65
years and accounts for 97% of AD in the US. LOAD
is sporadic and up to 60-80% of cases are inheritable.
As a complex disease, the genetic etiology of AD
is still not completely understood. Carrying the E4
allele of apolipoprotein E (APOE4) is a well-known
genetic risk factor for AD [3, 4]. Genome-wide asso-
ciation studies (GWASs) have identified about 40
AD-related loci. These loci map by proximity to
genes involve in lipid metabolism, inflammation,
immune function, endocytosis, and other biologi-
cal pathways [5, 6]. However, with the exception of
the coding SNPs in the APOE gene, SNPs in other
regions have minor effects on AD risk and age of
onset.

Polygenic risk scores (PRS) is an approach that
combines the effects of multiple SNPs based on their
effect sizes and can be used for the prediction of risks
of multiple diseases including AD [7, 8]. By using the
summary data from the GWAS study of the Interna-
tional Genomics of Alzheimer’s Project (IGAP), PRS
has been successfully applied to predict life-time AD
risk, brain structure changes (e.g., hippocampal corti-
cal thickness, hippocampal volume), cognitive ability
changes, and biomarkers from cerebrospinal fluid and
plasma [9–15]. Moreover, a Polygenic Hazard Score
(PHS) was recently developed with APOE E2 and E4
alleles, and 31 SNPs selecting from the IGAP sum-
mary data after applying the step-wise Cox regression
and used to quantify individual differences with age-
specific genetic risk for AD [16]. Both the PRS and
PHS models have comparable performance on the
prediction of AD risk [11].

Mild cognitive impairment (MCI) is an intermedi-
ate state between the expected cognitive decline of
normal aging and AD dementia. About one-third of
MCI patients will develop AD over time [17, 18].
The early detection of MCI patients with high risk of
AD may provide an opportunity to apply preventive
or therapeutic interventions, which may be helpful
for preventing or delaying the further conversion to
AD [19]. Therefore, it is important to develop models

that distinguish clinically heterogeneous MCI with
different risks of AD. In this study, we constructed
polygenic risk scores (PRS) by using the SNPs from
four well-replicated, consortium GWASs and tested
its association with the progression from mild cog-
nitive impairment (MCI) to AD as well as cognitive
ability and imaging features by using the clinical and
biological data from the ADNI study.

METHODS

Participants

In the discovery stage, we used the dataset from
the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) study (http://adni.loni.ucla.edu). There were
2,253 participants from the ADNI 1, ADNI GO, and
ADNI 2 phases with clinical and biological data
available (September 2005–January 2020), which
included clinical diagnosis (Normal Cognition, MCI,
and AD), longitudinal cognitive phenotypes, and
neuropathological phenotypes including biomarkers
from cerebrospinal fluid (CSF), and the imaging
results of PET and MRI. Of them, 916 participants
diagnosed with MCI at baseline or during follow-up
and 767 samples with GWAS data available remained
for further analysis. There were 294 subjects diag-
nosed with AD during the follow-up period.

An independent sample of MCI patients was
selected from the National Alzheimer’s Coordinat-
ing Center (NACC) to replicate the findings from
ADNI. There were a total of 41,459 participants in the
requested NACC dataset, of which 12,068 presented
with MCI at baseline or during the following visits.
Of these patients, there were 1,373 patients with at
least two visits and who had GWAS data available.
During the follow up visits, 864 out of the 1,373 MCI
patients progressed to AD and 509 patients did not
progress to AD but continued to have a diagnosis of
MCI at the last visit. The flowcharts of the participant
selection and further details of the two datasets have
been presented in Supplementary Figure 1 and in the
Supplementary Material.

The ADNI and NACC studies were approved by
local institutional review boards, and all participants
or participant’s guardians provided written informed
consent. Additional information about ADNI and
NACC studies are available at http://www.adni-
info.org and https://www.alz.washington.edu/WEB/
study pop.html, respectively.

http://adni.loni.ucla.edu
http://www.adni-info.org
https://www.alz.washington.edu/WEB/study_pop.html
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Genotyping and imputation

We downloaded the GWAS data from the ADNI
database on February 20, 2020, Genotyping was
performed with the platforms of Illumina Human610-
Quad, Illumina Human OmniExpress, and Illumina
Omni 2.5M on 1,674 MCI participants from ADNI
1, GO, and ADNI 2 phases, respectively. We then
used SHAPEIT for phasing and performed impu-
tation with minimac4 on the Michigan imputation
server (https://imputationserver.sph.umich.edu) with
the HRC reference panel (Version r1.1 2016) consist-
ing of 64,940 haplotypes of predominantly European
ancestry. For imputation, a set of high-quality SNPs
were used: MAF > 0.01; call rate > 95%, Hardy-
Weinberg equilibrium test p > 10–6; allele frequency
difference ≤ 0.20 between the sample data and the
reference panel. The genotyping data was processed
by using PLINK 1.90/2.0.

For NACC, we requested the GWAS data for
the 10,256 subjects in NACC AD Centers 1-7, of
which genotyping was performed with the plat-
forms of Human660W-Quad v1 A, HumanOmni
Express-12v1 A/H, and humanomniexpressexome-
8v1-2 a, respectively (https://www.alz.washington.
edu/ADGC/GENOtype.html) [20]. We then con-
ducted quality control and imputation with the same
procedures of ADNI.

PRS/PHS construction

There were 40 loci associated with AD risk
reported by four well-powered AD GWASs/GWAXs
(genome-wide association study by proxy) and
78 leading SNPs were found in those loci, which
included two SNPs (rs41289512 and rs12691088) in
the genomic region of APOE locus (19q13.32) [5, 6,
9, 21, 22]. All but one SNP rs9271058 were included
in the imputation data. We performed clump analysis
with PLINK 1.90 for these 77 SNPs based on the
ADNI GWAS dataset and the reported p values
from the previous GWASs. 41 independent SNPs,
including one APOE SNP rs41289512, were selected
based on an r-squared threshold greater than 0.1. We
did not include rs41289512 in the PRS calculation
since this SNP is located in the APOE region and
had substantially greater effect size than other SNPs.
The other APOE SNP rs12691088 was not included
in the PRS calculation as it has moderate linkage
disequilibrium (r2 = 0.53) with rs41289512. To
account for the effect of the APOE gene, we included
the APOE E2 and E4 allele counts as covariates in

the final regression model instead of including them
in PRS calculation. The remaining 40 SNPs were
used to construct PRS, weighted by the effect size
estimates from the GWAS with the largest sample
size for association with LOAD. Genomic data on
the PRS SNPs is included in Supplementary Table 1.
The PRS was calculated using PRSICE-2 and stan-
dardized to z-scores (centering by mean and scaling
by standard deviation) [23]. For comparison, we also
constructed PRSs by using the results of 4,465 SNPs
with p ≤ 1 × 10–5 in a recent AD GWAS Meta study
(including 71,880 cases and 383,378 controls) [21].
SNPs within the 250kb region surrounding APOE
(chr19:45159053-45662650; GRCh37/hg19 assem-
bly) were excluded and five different thresholds
(i.e., p ≤ 1 × 10–5, 5 × 10–6, 1 × 10–6, 5 × 10–7,
and 1 × 10–7) were applied for SNPs selection
for the PRS construction. The summary results of
this GWAS were downloaded from the website
of the CTG laboratory (https://ctg.cncr.nl/docume
nts/p1651/AD sumstats Jansenetal 2019sept.txt.gz).
Desikan et al. [16] reported that PHS combining
the effects of APOE E2 and E4 alleles, as well as
31 GWAS SNPs was associated with the age of
AD onset. However, for comparison with PRS, we
constructed PHS by only using those 31 reported
SNPs, without including the APOE E2 and E4 alleles.
After linkage-disequilibrium (LD) based clumping,
25 independent SNPs remained (r2 < 0.1) in both the
ADNI and NACC datasets and their reported effect
sizes [log(HR)] in the same publication were used
as the weights for PHS construction. Information
of the 25 SNPs can be found in Supplementary
Table 2 [16]. For method comparisons, we also
constructed a Bayesian PRS by using the method
of LDpred2 [24, 25]. Briefly, this method estimates
posterior mean causal effect sizes for each SNP with
a Gibbs sampler by assuming a prior for the genetic
architecture and LD information from a reference
panel. PRS was then constructed using the posterior
effect sizes.

Statistical analysis

The association between demographic and clinical
characteristics, PRS, and the progression from MCI
to AD was tested using Cox proportional hazards
regression with adjustment for age at baseline,
sex, years of education, race, top three principal
components (PCs) from the genetic data, and the
allele copies of APOE E2 and E4. The endpoint event
was the occurrence of AD. Survival time (in years)

https://imputationserver.sph.umich.edu
https://www.alz.washington.edu/ADGC/GENOtype.html
https://ctg.cncr.nl/documents/p1651/AD_sumstats_Jansenetal_2019sept.txt.gz
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Table 1
Characteristic distributions of the demographic and clinical variables in the ADNI dataset

Variables Total Event (AD, %) Beta1 SE1 p1

Overall 767 294 (38.3)
Follow-up time (y)

Median (Min-max) 3.00 (0.39–13.00) 2.03 (0.46–11.50)
Age (y) 0.028 0.008 0.001

Mean ± SD 73.4 ± 7.40 74.3 ± 7.00
Median (Min-max) 73.6 (55.0–91.4) 74.4 (55.0–88.4)

Sex –0.013 0.119 0.912
Female 299 114 (38.1)
Male 468 180 (38.5)

Education (y) –0.001 0.021 0.951
mean ± SD 15.9 ± 2.82 15.9 ± 2.69

Race2 –0.249 0.238 0.295
Non-Hispanic White 700 275 (39.3)
Other races 67 19 (28.4)

Baseline tau3 1.358 0.167 5.07 × 10–16

Mean ± SD [min-max] 5.56 ± 0.43 5.76 ± 0.41
Median (Min-max) 5.55 (4.58–6.72) 5.76 (4.62–6.71)

Baseline ptau3 1.261 0.145 < 2 × 10–16

Mean ± SD [min-max] 3.19 ± 0.49 3.43 ± 0.46
Median (Min-max) 3.18 (2.11–4.52) 3.44 (2.17–4.52)

Baseline A�3 –1.523 0.155 < × 10–16

Mean ± SD [min-max] 6.79 ± 0.47 6.55 ± 0.42
Median (Min-max) 6.77 (5.35–7.44) 6.51 (5.59–7.44)

APOE-E4 0.554 0.080 3.35 × 10–12

0 385 108 (28.1)
1 302 143 (47.4)
2 80 43 (53.8)

APOE-E2 –0.492 0.250 0.049
0 708 277 (39.1)
1 59 17 (28.8)

1Univariate Cox regression. 2There are 222 participants with missing data on tau/ptau/A� levels. 3Log-transformed.

was defined as the duration from baseline for patients
with MCI or the date of first diagnosis of MCI to
AD occurrence or censoring. The HR from the Cox
model analysis indicated the risk of progressing to
AD caused by the per 1 SD change in PRS.

We performed log-transformation for the CSF
biomarkers (A�, tau, and ptau). The volumes of five
brain regions [i.e., Ventricles, Hippocampus, Entorhi-
nal, Fusiform gyrus, and Middle temporal gyrus
(MidTemp)] were represented as the percentage to
the intracerebral volume (ICV). The correlations
between PRS and these longitudinal phenotypes were
investigated with a linear mixed model by including
a random intercept and a random slope of follow-up
time with adjustment for age at baseline, sex, years
of education, race, top three principal components
(PCs), and the allele copies of APOE E2 and E4.
The survival and nlme packages in R were used for
these analyses. Mediation analysis was performed to
quantify the direct and indirect relationships between
PRS, A�42, PTau, and AD progression by using the
method and related R code from one previous publi-

cation [26]. Direct and indirect effects were estimated
with generalized linear and Cox regression analy-
sis with adjustment for age at baseline, sex, years
of education, race, top three PCs from the genetic
data, and the number of allele copies of APOE E2
and E4. Bootstrapping was used for significance test-
ing and standard error estimations of these effects.
All analyses were conducted with R (version 3.5.1)
if not mentioned otherwise.

RESULTS

Characteristics of the study populations

There were 916 participants diagnosed with MCI
at baseline or during follow-up. After merging the
PRS data and clinical data, 767 samples remained
for further analysis and 294 subjects were diagnosed
with AD during the follow-up period. It should be
noted that there were missing values in the baseline
tau/ptau and A� levels for 222 subjects. The distri-
butions of demographic and clinical variables were
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Table 2
Survival analysis of polygenic risk score (PRS)/polygenic hazard score (PHS) and the progression of MCI to AD in ADNI dataset

PRS PHS

Variables Beta1 SE1 p1 Beta2 SE2 p2

Age (y) 0.045 0.009 4.59 × 10–7 0.038 0.008 4.46 × 10–6

Male in sex –0.140 0.126 0.267 –0.146 0.118 0.214
Education (y) 0.019 0.022 0.382 0.015 0.020 0.459
Other races –0.103 0.240 0.668 –0.186 0.228 0.414
PC3 3.276 2.730 0.230 5.604 2.715 0.039
PC9 –8.854 3.537 0.012 –7.408 2.855 0.009
PC10 –5.879 3.184 0.065 –4.698 2.567 0.067
APOE E4 (allele number) 0.613 0.088 3.82 × 10–12 0.573 0.082 3.10 × 10–12

APOE E2 (allele number) –0.295 0.253 0.243 –0.170 0.229 0.458
PRS/PHS 0.182 0.061 0.003 0.068 0.056 0.221
1Multivariate Cox regression model including PRS, age at baseline, sex, years of education, race, significant principal components, the allele
numbers of APOE E4 and APOE E2 (#total = 767 and #event = 294). 2Multivariate Cox regression model including PHS, age at baseline, sex,
years of education, race, significant principal components, the allele numbers of APOE E4 and APOE E2 (#total = 767 and #event = 294).

presented in Table 1. In the univariate analysis, we
found that age, A�42, tau, and ptau levels at baseline,
number of APOE E2 and E4 alleles were all signifi-
cantly associated with the progression to AD among
MCI patients (Table 1, p < 0.05).

There were 1,373 MCI patients with both the geno-
typing data and survival data in NACC, of which 864
subjects were diagnosed with AD during the follow-
up period. The distributions of age, sex, education
years, race, APOE E2/3/4 alleles can be found in
Supplementary Table 3. We found significant asso-
ciations between race, number of APOE E2, E3, and
E4 alleles and AD survival, which partially replicated
the results in the ADNI study.

Survival analysis of PRS/PHS and the
progression of MCI to AD

We investigated the association between the
PRS/PHS and the progression of MCI to AD
by applying Cox proportional hazard models with
adjustment for age at baseline, sex, years of educa-
tion, race, ethnicity, top three significant PCs from the
genetic data, and the number of allele copies of APOE
E4 and APOE E2. As presented in Table 2, we found
that the PRS was associated with the time interval of
progression of MCI to AD (beta = 0.182, SE = 0.061,
p = 0.003), which indicated that MCI patients with
higher PRS scores have increased risk developing AD
after MCI. Survival probability was also estimated by
the Kaplan-Meier approach. Patients from the ADNI
study were divided into three groups based on the PRS
quartiles: group 1 (PRS < the 25th percentile), group
2 (< the 75th percentile), and group3 (≥ the 75th per-
centile). As shown in Fig. 1a, patients in group 2

and 3 had a significantly shorter survival time than
those in group 1 [median progression time = NA (as
less than 50% patients developing AD at the end of
follow-up), 6.04, and 4.03 years for MCI patients in
group 1, 2, and 3, respectively; Log-rank p = 0.003].
However, no evidence was found for the correlation
between PHS and the progression of MCI to AD
(p = 0.221 in Table 2). We also tested the correla-
tion between the Bayesian PRS constructed with the
LDpred2 method and MCI progression and found
consistent results with the PRS using the Prsice2
method (beta = 0.281, SE = 0.125, p = 0.024) (Sup-
plementary Table 4). We constructed PRSs using
SNPs with different thresholds (i.e., p ≤ 1 × 10–5,
5.0 × 10–6, 1.0 × 10–6, 5.0 × 10–7, and 1.0 × 10–7)
and tested their associations with MCI progres-
sion (p = 0.058, 0.044, 0.084, 0.129, and 0.149,
respectively). Only PRS constructed with SNPs with
p ≤ 5.0 × 10–6 showed significant association with
MCI to AD progression (beta = 0.115, SE = 0.058,
p = 0.044) (Supplementary Table 5). However, this
association was not replicated in the NACC dataset
(Supplementary Table 6; p = 0.224).

A previous study reported that Cox proportional
hazard and Logistic regression models provided very
similar estimates of regression coefficients in studies
with short follow up time (5 years or less) [27]. We
tested the association of PRS and AD status by using
logistic regression in the ADNI dataset and found
similar result between PRS and AD risk (beta = 0.195,
SE = 0.080, p = 0.015) (Supplementary Table 7).

We performed stratified analysis by the numbers
of APOE E2/E3/E4 alleles and found that the PRS
using the Prsice2 method was significantly associ-
ated with the risk of AD progression in the strata of
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Fig. 1. Kaplan Meier plots of AD progression based on the trichotomized polygenic risk score (PRS). Patients were divided into three
groups: group 1 (PRS < the 25th percentile), group 2 (< the 75th percentile), and group 3 (≥the 75th percentile). A) Patients in the ADNI
dataset (Log-rank p = 0.003): n = 767 (with # of deaths = 294), median progression time = 6.04, 4.03 years for MCI patients in group 2, and
3, respectively; B) Patients in the NACC dataset (Log-rank p = 0.021): n = 1373 (with # of deaths = 864), median progression time = 3.26,
3.16, 2.99 years for MCI patients group 1, 2, and 3, respectively.

Table 3
Associations of polygenic risk score (PRS)/polygenic hazard score (PHS) and longitudinal cognitive impairments for in ADNI dataset

Phenotype Participants Observations PRS PHS

Beta1 SE1 p1 Beta1 SE1 p1

MMSE 766 3992 –0.091 0.066 0.168 –0.044 0.064 0.490
CDR-SB 763 3956 0.008 0.034 0.826 –0.028 0.034 0.404
MOCA 482 2372 –0.258 0.125 0.039 –0.002 0.120 0.989
FAQ 763 3952 0.085 0.142 0.551 –0.125 0.146 0.393
ADAS-Cog11 766 3987 0.499 0.161 0.002 0.113 0.159 0.477
ADAS-Cog13 765 3964 0.800 0.240 9.0 × 10–4 0.209 0.236 0.377
ADASQ4 767 3993 0.373 0.086 1.4 × 10–5 0.145 0.081 0.077

1Adjusted for age at baseline, sex, years of education, race, significant principal components, and the allele numbers of APOE E4 and
APOE E2.

participants with one copy of APOE E4, null copy
of APOE E2, or one copy of APOE E3 (p < 0.05)
(Supplementary Table 8). This association was not
significant in participants possessing two copies of
APOE E4. We then tested the interaction effect of
PRS and APOE alleles by including interaction terms
in model but did not find statistical significance for
any of the interactions (p = 0.564, 0.800, and 0.931
for the interaction terms between PRS and APOE E2,
E3, and E4, respectively). No significance was found
for the APOE stratified results of PHS association
with progression from MCI to AD (Supplementary
Table 8).

Correlation between PRS/PHS and longitudinal
cognitive impairments

The correlation between the PRS/PHS and longi-
tudinal cognitive scores (MMSE, MOCA, CDR-SB,

FAQ, and ADAS-Cog 11/13/Q4) were presented in
Table 3 adjusted for age, sex, years of education,
race, ethnicity, top 3 significant PCs, and the num-
bers of APOE E4 and APOE E2 alleles. We found that
the PRS was significantly correlated with the worse
cognitive performance measured by ADAS-Cog11,
ADAS-Cog13, and ADASQ4 (beta = 0.499, 0.800,
and 0.373; p = 0.002, 9.0 × 10–4, and 1.4 × 10–5,
respectively). PRS constructed with GWAS SNPs
with p ≤ 5 × 10–6 also showed significant associa-
tion with the three cognitive measures (beta = 0.345,
0.650, and 0.346; p = 0.034, 0.007, and 0.0001 for
ADAS-Cog11, ADAS-Cog13, and ADASQ4, respec-
tively; Supplementary Table 5).

However, no significant association was found for
the other cognitive phenotypes. We also did not find
any significant correlation between PHS and the lon-
gitudinal cognitive scores.
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Table 4
Correlation between polygenic risk score (PRS)/polygenic hazard score (PHS) and longitudinal biomarkers (from CSF, PET, and MRI

imaging) in subjects with MCI at baseline or diagnosed during following visits in ADNI dataset

Biomarker #Participants #Observations PRS PHS

Beta1 SE1 p1 Beta1 SE1 p1

A�2 295 712 –0.037 0.023 0.116 –0.018 0.024 0.447
tau2 295 711 0.068 0.022 0.002 0.012 0.023 0.598
ptau2 294 709 0.082 0.025 0.001 0.014 0.026 0.599
PIB 34 81 0.175 0.068 0.017 –0.061 0.069 0.387
FDG 385 1,278 –0.012 0.007 0.072 –0.015 0.006 0.015
AV45 312 817 0.040 0.011 3.0 × 10–4 0.009 0.010 0.374
Ventricles3 700 2,878 0.009 0.040 0.812 -0.033 0.038 0.391
Hippocampus3 652 2,553 –0.011 0.003 1.0 × 10–4 -0.004 0.003 0.142
Entorhinal3 626 2,431 –0.006 0.002 7.0 × 10–4 –0.003 0.002 0.113
Fusiform3 626 2,431 –0.003 0.006 0.608 –0.003 0.006 0.656
MidTemp3 626 2,431 –0.013 0.007 0.054 –0.012 0.007 0.062
1Adjusted for age at baseline, sex, years of education, race, significant principal components, and the allele copies of APOE E4 and APOE
E2. 2Log-transformed. 3These dependent variables were expressed as the percentages to intracranial volume.

Table 5
Association between polygenic risk score (PRS) and the longitudinal clinical outcomes in NACC dataset

Outcome #participants #events Beta1 SE1 p1

Survival (MCI to AD) 1,373 864 0.094 0.037 0.009
#participants #observations

MMSE 1,227 4,294 –0.138 0.067 0.039
CDR-SB 1,360 5,227 0.033 0.035 0.346
CDR Global 1,360 5,227 0.004 0.006 0.513
Ventricles2 52 118 –0.005 0.004 0.992
Hippocampus2 52 118 –0.034 0.039 0.393
Entorhinal2 52 118 –0.089 0.097 0.303
Fusiform2 52 118 –0.076 0.055 0.174
MidTemp2 52 118 –0.038 0.027 0.171
1Adjusted for age at baseline, sex, years of education, race, and the allele copies of APOE E4 and E2. 2These dependent variables were
expressed as the percentages to intracranial volume.

Correlation between PRS/PHS and longitudinal
biomarkers from CSF and imaging

We investigated the correlations between the
PRS/PHS and longitudinal biomarkers from CSF as
well as the PET- and MRI-based image data. The
distributions of the number of observations in these
analyses were presented in Supplementary Table 9.
As shown in Table 4, there were significant correla-
tions between the PRS and increased levels of tau and
ptau in CSF (beta = 0.068 and 0.082; p = 0.002 and
0.001, respectively). We also observed significant
correlations between PRS and cortical amyloid
burden, which was quantified using 11C-PiB PET
and AV45 (18F florbetapir) PET (beta = 0.175 and
0.040; p = 0.017 and 3.0 × 10–4, respectively). MCI
patients with different PRS scores had different vol-
umes in hippocampus, entorhinal cortex, and middle
temporal gyrus ((beta = –0.011, –0.006, and –0.013;
p = 1.0 × 10–4, 7.0 × 10–4, and 0.054, respectively).

We also observed significant correlations between
the PHS and FDG and MidTemp (beta = –0.015;
p = 0.015). The PRS constructed with SNPs with
p ≤ 5 × 10–6 in GWAS also presented significant
associations with the increases of A� (beta = –0.059;
p = 0.010), tau (beta = 0.066; p = 0.003), ptau
(beta = 0.078; p = 0.002) in CSF, amyloid burden
measured with AV45 PET (beta = 0.025; p = 0.020),
and the volume of hippocampus (beta = –0.007;
p = 0.016) in the ADNI dataset (Supplementary
Table 5).

Replication in NACC study

We performed an independent replication using the
NACC dataset. As shown in Table 5, there is a signif-
icant association between the PRS constructed using
the Prsice2 method and increased risk of AD pro-
gression (beta = 0.094, SE = 0.037, p = 0.009), which
is consistent with the finding in the ADNI dataset.
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We observed similar results using the Bayesian PRS
constructed with the LDpred2 method (beta = 0.200,
SE = 0.075, p = 0.007) (Supplementary Table 4).

The survival probability was also estimated with
the Kaplan-Meier approach. As shown in Fig. 1b,
patients in groups 2 and 3 had significantly shorter
survival times than those in group 1 (median progres-
sion time = 3.26, 3.16, 2.99 years for MCI patients in
group 1, 2, and 3, respectively; Log-rank p = 0.021).

In the longitudinal analysis, we found a signifi-
cant correlation between the PRS and the change in
of MMSE for MCI patients. However, we could not
replicate the associations between the PRS and MRI
markers identified in the ADNI study. We performed
stratified analysis by age, sex, race, and numbers of
APOE E2/E3/E4 alleles and found that the PRS was
significantly associated with the risk of AD progres-
sion in the strata of older (≥55), females, Whites,
APOE E4 heterozygous individuals and APOE E2
non-carriers (p < 0.05) (Supplementary Table 10).

Model performance comparison

We evaluated the predictive accuracy of different
models by using the Harrell’s C-statistic (Supplemen-
tary Table 11). As shown, the APOE model including
numbers of APOE E2 and E4 alleles had a sig-
nificantly increased C-statistic compared with the
demographic model that included only demographic
variables in the ADNI data (0.635 versus 0.557 for the
APOE model and demographic model, respectively;
p = 7.37 × 10–7). After adding PRS calculated by the
PRSICE2 method to the APOE model, there is a slight
increase in the Harrell’s C-statistic (0.644 versus
0.635 for the PRS1 model and APOE model, respec-
tively; p = 0.124). Similar results were observed for
PRS2 model calculated using the Bayesian PRS (Har-
rell’s C-statistic = 0.642; p = 0.119 compared with
the APOE model) and the model including PRS3
constructed with GWAS SNPs with p ≤ 5.0x10–6

(Harrell’s C-statistic = 0.638; p = 0.384 compared
with the APOE model).

Models that included the PHS in contrast with
the APOE model did not show any significant
improvement in predictive accuracy (0.627 versus
0.627 for the PHS model and APOE model, respec-
tively; p = 0.814). In the NACC dataset, we found
that the APOE model had better performance on
prediction than the demographic model (Harrell’s C-
statistic: 0.575 versus 0.524 for the APOE model and
demographic model, respectively; p = 3.52 × 10–4);
however, inclusion of PRS or PHS in the APOE model

did not significantly increase the prediction accuracy
(Harrell’s C-statistic = 0.585 and 0.615 for PRS and
PHS models, respectively; p = 0.418 and 0.579 for
prediction comparisons of PRS model versus APOE
model, and PHS model versus APOE model, respec-
tively). We also estimated the prediction accuracy
of model including the Bayesian PRS and found
its Harrell’s C-statistic = 0.574 (p = 0.394 compared
with the APOE model). Non-significant results were
found for the PRS constructed with GWAS SNPs with
p ≤ 5 × 10–6 (Harrell’s C-statistic = 0.574; p = 0.538
comparing with the APOE model).

Mediation analysis

Reduction of CSF A�42 levels and elevation of
phosphorylated tau protein are two important patho-
logic changes in the brains of MCI and AD patients. In
this study, we observed that the PRS were associated
with the baseline levels of CSF A�42 and phosphory-
lated tau in MCI patients (Supplementary Figure 2).
We performed mediation analysis in the ADNI
dataset (547 MCI patients with 198 AD event) to test
if the effect of the PRS on AD progression are medi-
ated by the two biomarkers. As shown in Supplemen-
tary Figure 2, we found that the PRS contributed the
increased risk of AD progression through the mech-
anism mediated by A�42 (beta = 0.056, SE = 0.026,
p = 0.036). No statistical significance was observed
for the direct effect of PRS (beta = 0.067, SE = 0.072,
p = 0.355) as well as the indirect effect mediated
by phosphorylated tau (beta = 0.036, SE = 0.020,
p = 0.075). Our results suggested that about 35.2%
[0.056/(0.067 + 0.056 + 0.036) = 0.352] effect of PRS
on AD progression was mediated by A�42.

DISCUSSION

In this study, we investigated the association
between PRSs/PHS and the time of progression to
AD in patients with MCI. We found that the PRS
constructed with SNPs reported in previously AD
GWASs was significantly associated with the pro-
gression from MCI to AD in both the ADNI cohort
and the NACC study after adjusting for demographic
and clinical variables. Further analysis showed that
this PRS was associated with increases of ADAS-
Cog11/ADAS-Cog13/ADASQ4 scores, tau/ptau lev-
els in CSF, amyloid burden in brain regions, and
the decreased volumes of hippocampus and entorhi-
nal cortex. Although several studies have reported
the association between PRS and AD risk as well
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as with AD pathologic-related biomarkers [11, 12,
27–33], there are at least three differences between
this study and those previously published. First, in
the study design, we used the NACC dataset as an
independent replication of our findings on the PRS
in the ADNI dataset, while the results of most pre-
vious studies were only based on the ADNI dataset.
Second, we performed a comprehensive investiga-
tion of the correlation between the constructed PRS
and longitudinal CSF biomarkers (i.e., A�42, tau/ptau
levels) and imaging biomarkers (i.e., amyloid bur-
den and the volumes of various structures of the
brain). Other studies were limited to investigation of
the association of AD PRSs and baseline-levels of
A�42/tau/ptau, and/or longitudinal changes of vol-
umes. Third, in this study, we performed mediation
analysis to explore possible mechanisms underlying
the association between the AD PRS and AD progres-
sion, which has not been reported in other studies.
We found that the effect of the PRS on the time
of progression to AD from MCI was partly medi-
ated via A�42. Finally, we compared the results of
conventional PRS (based on different p value thresh-
olds and LD pruning) with a PRS calculated by a
recently published Bayesian method (LDPred2) [24]
and with PRSs constructed using SNPs with different
p-value selection thresholds. Overall, the study and
specifically the mediation analysis places the PRS
association results in context with the National Insti-
tutes for Health/Alzheimer’s Association (NIH/AA)
Research Framework for observational and inter-
ventional research in AD [34–37]. The framework
provides guidelines to interpret the definition of
AD in terms of specific biomarkers related to A�
deposition, pathologic tau accumulation and neu-
rodegeneration [AT(N)]. The framework considers
AD as a continuum where the biomarkers help to
stage the severity of the disease and symptoms in con-
text of underlying biology and pathophysiology. The
mediation analysis provides estimates of the contri-
bution of the PRS, derived from numerous biological
pathways to specific AT(N) biomarker-related pro-
cesses to the progression of AD. Overall, our findings
suggested that the PRS derived from the AD GWASs
is useful for the prediction of AD risk and other clin-
ical changes in MCI patients.

It has been established that the progression from
MCI to AD can be predicted by the biomarkers from
MRI imaging and CSF, APOE genotypes, and differ-
ent cognitive test batteries [11, 38, 39]. Recent studies
also suggested that both PRS and PHS can be used to
predict an age-specific risk for developing AD [11,

31, 40]. In this study, we investigated the association
between PRSs/PHS and the time from MCI to AD
and found that PRSs constructed with SNPs reported
in previous AD GWASs can be used for the prediction
of progression from MCI to AD in both the discovery
and replication studies. Our results are similar with
previous studies, which constructed PRS using the
non-APOE SNPs from the IGAP GWAS and reported
a predictive ability for LOAD progression from MCI
of 61–67%, especially in MCI patients with amyloid
deposition [28, 33]. By using the effect size estimates
from a recent AD GWAS meta-analysis [6], Altmann
et. al. constructed PRSs with two p-value cut-offs:
p = 0.5 and 1.0 × 10–5 (genome-wide suggestive) and
found the two PRSs had significantly different distri-
butions between cognitively normal individuals and
MCI patients, as well as between cognitively normal
individuals and AD patients [27]. However, both PRS
did not show significant differences between MCI and
AD patients. Desikan et al. reported that the PHS
constructed from 31 SNPs can significantly predict
time to progression from MCI to AD in the ADNI
dataset [32]. However, we did not replicate this asso-
ciation in our study. Although both studies used the
ADNI dataset, this discrepancy might be due to the
difference in SNPs used for PHS construction. Our
study applied LD clumping before PHS construc-
tion, which resulted in 25 independent SNPs with
pairwise r-squared < 0.1, and also excluded the two
SNPs in APOE region, while the PHS in the Desikan
study was constructed with 31 SNPs including the
two APOE SNPs, which had stronger effects com-
pared with SNPs from other loci [16]. Such results
suggest that APOE SNPs in the PHS reported in this
paper [16] may play the major role in the prediction
of AD risk in MCI patients.

In this study, we found that the AD PRS was
associated with CSF biomarkers (i.e., CSF A� and
tau/ptau) and amyloid burden in brain regions. Our
results were consistent with two previous studies
which reported significant associations between the
PRS based on significant SNPs identified in the Inter-
national Genomics of Alzheimer’s Disease GWAS
and baseline levels of CSF A� and tau/ptau [27, 29].
The mediation analysis suggested that the associa-
tion between PRS and AD progression might via a
mechanism mediated by A�. Since both A� plaque
and tau deposition precede memory impairment [41],
these results suggest that PRS may reflect patho-
physiology in early AD stages. However, further
functional studies are warranted. It should be noted
that the PRSs constructed in another study with two
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different P-value thresholds showed significant asso-
ciation with the baseline levels of tau/ptau, but not
A�. Such inconsistencies might be a consequence
that PRSs constructed with variants with strong
effects are more robust to population structure dif-
ferences [27, 42].

Both the entorhinal cortex and the hippocampus
are essential parts of the medial temporal lobe system
that supports declarative memory [43]. It has been
shown that early AD associated Braakian atrophy
includes the hippocampus, entorhinal and cingulate
cortices [44, 45]. In this study, we found that PRS had
significant associations with the volume changes of
hippocampus and entorhinal cortex. This was consis-
tent with a previous study, which found that the AD
PRS comprised of non-APOE SNPs was associated
with reduced hippocampal volume in healthy older
adults and those with MCI [13].

The present study had several limitations. First, the
sample size may not be large enough to detect certain
associations, especially for analyses using samples
with CSF biomarker data of A� and tau. Second,
we did not replicate the association between the PRS
and imaging markers observed in the ADNI study in
the NACC study, which might be due to the small
sample size in the NACC dataset for individuals with
longitudinal biomarker data. Third, different diagnos-
tic criteria of AD were used across different UDS
versions and Alzheimer’s disease centers (ADCs)
contributing data to the NACC study, which might
cause population heterogeneity for AD diagnoses.
Validation of our findings in a larger study is war-
ranted. Finally, AD develops over a period of decades
often without evidence of cognitive decline. The
interval between MCI and development of dementia
represents only one part of the cycle of neurode-
generative events. Other factors, including vascular
pathology that is independent of the genetic factors
modeled in the PRS may influence the rate of pro-
gression of AD development for individuals.

In conclusion, a PRS derived from 40 common AD
risk variants with small effect size was found to be
associated with the progression time from MCI to
AD independent of APOE E4 and E2 risk alleles. The
correlation between the PRS and early AD markers
(tau/ptau, and atrophy of hippocampus and entorhi-
nal cortex) shows evidence for a genetic modulation
of neurodegeneration, and the potential for a combi-
nation of PRS and other brain biomarkers to aid in the
prediction of MCI patients at risk of AD. Mediation
analysis and interpretation of the results in context
of the NIH/AA research framework enable use of

the PRS in a more precise approach for the design
of clinical trials with specific agents that may affect
A�, pathologic tau, or other biological pathways.
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